

BLUE OCEAN MARICULTURE

9/23/2025

Water Quality Monitoring - Sep. 2025

Prepared by

MEGA Lab UHH – CNHS 200 W. Kawili St. Hilo, HI 96720

BLUE OCEAN MARICULTURE

WATER QUALITY MONITORING - SEP. 2025

SAMPLING REPORT

Survey Date: 9/23/2025

Client: Blue Ocean Mariculture

Current: North

Log Number: BOM-WQ-SEP-2025

Environmental Conditions

Effluent samples were collected adjacent to the net pen containing the highest biomass of fish. Sample collection occurred approximately 2-hours after a feeding event at a distance of 3-meters from the pen. The pen was partially raised prior to sampling. The water was clear with no evidence of high turbidity, discoloration, visible sheen, foam, solids, or floating debris near the pen during the sampling event.

Samples were collected during a rising tide (0.4ft to 1.7ft) influenced by a 3% waxing moon. Conditions consisted of 6-8kt Southwest winds that stayed consistent throughout the sampling duration. A 1-2ft Southwest swell was present during sampling and stayed consistent throughout the entire sampling event. Overall, sea conditions were moderately chopping with consistent winds. Skies over the ocean were clear with rainclouds moving over the coastline and at higher elevation. The air had light levels of vog from the Kilauea geological activity. There were visible slicks at all sampling stations with heavy amounts visible particulates in the water. There were schools of baitfish observed at the Effluent site.

A moderate North current was evident during the time of sampling.

Description of sampling methods

Water samples are collected at the monitoring sites monthly throughout the year. Monitoring sites are at the effluent discharge location near the pen containing the highest biomass of fish, four zone of mixing sites, and two control sites. Effluent samples are collected down current from the net pen containing the highest biomass at the surface, mid-pen, and bottom of the receiving water two hours after feeding. Surface samples are collected no less than 1 meter or more than 5 meters below the surface, and no farther than 10 meters down current from the net pen. Mid-pen samples are collected at the mid-pen depth no farther than one 1 meter down current from the net pen. Bottom samples are collected no less than 1 meter or more than five 5 meters above the sea floor, and no farther than 10 meters down current from the net pen. Zone of Mixing (ZOM) samples are collected down-current from the facility at the boundaries of the ZOM. Samples are collected at the north or south locations depending on the dominant current during the day of sampling. Samples are collected at the surface, mid-pen depth, and bottom of the receiving waters. Surface samples are collected not less than 1 meter or more than 5 meters below the surface. Bottom samples are collected not less than 1 meter nor more than 5 meters above the sea floor.

Water samples collected from the monitoring sites are filtered through pre-combusted (500° C, 6h) GF/F (Whatman) filters (pore size 0.7-µm), as well as directly collected for RAW samples. These water samples are transported to the laboratory on ice and stored at -20°C until analysis. Samples are analyzed for nitrate + nitrite (NO3- + NO2-), ammonium (NH4+), phosphate (PO43-), total dissolved phosphorus (TDP), and total dissolved nitrogen (TDN). The nutrient values are measured using standard autoanalyzer methods. Inorganic nitrogen and phosphorus will be considered indirect measure of terrigenous effluents. Values recorded below the minimum detection limit (MDL) are presented as '<MDL.'. The MDL is calculated with analysis of seven of the same samples (Gravimetric Standard C4, 10, 100, 10, 10 ug/L for NH3, Si, PO4, NO3, and NO2 respectively). These samples are analyzed in order to determine the standard deviation, which is multiplied by the degree of freedom in order to calculate the precise MDL. The gravimetric standards are analyzed throughout the runs to determine calibration drift. Copper values are determined with inductively coupled plasma—mass spectrometry (ICP-MS). Analytical mass and instrumental parameters are selected to ensure accurate and precise determination of copper by using known standards. Turbidity is measured for all samples collected from these locations using a turbidimeter. The turbidimeter is calibrated with known standards prior to analyzing the collected samples to ensure accuracy.

To characterize the conditions at each monitoring station during sampling events, physiochemical parameters (temperature, salinity, conductivity, dissolved oxygen concentration, dissolved oxygen percent saturation, pH) are measured on site using multi-parameter YSI and pH meters. The multi-parameter sonde sensors are calibrated prior to taking measurements using known standards.

LABORATORY TEST RESULTS

		_	Reported in μg/L				
<u>ID</u>	DATE	LAB ID	NO2+ NO3	NH3 +NH4	PO4	TDP	TDN
		MDL	0.1	0.3	0.3	2.5	1.6
Z1B	9/23/25	31	1.62	1.20	5.07	11.33	84.83
Z1M	9/23/25	34	2.06	1.66	4.05	11.49	105.11
Z1S	9/23/25	35	1.01	4.43	4.08	11.06	80.32
Z2B	9/23/25	36					
Z2M	9/23/25	37	0.96	1.54	3.97	10.70	82.74
Z2S	9/23/25	38	1.43	3.44	3.27	11.10	86.24
Z3B	9/23/25	43	1.68	2.87	3.69	10.80	83.40
Z3M	9/23/25	44	0.71	4.62	4.33	10.99	77.14
Z3S	9/23/25	45	1.11	1.98	4.05	10.58	78.05
Z4B	9/23/25	46	0.71	<mdl< td=""><td>4.44</td><td>11.15</td><td>77.44</td></mdl<>	4.44	11.15	77.44
Z4M	9/23/25	47	0.99	0.83	4.44	11.20	82.15
Z4S	9/23/25	50	1.38	1.78	4.03	11.22	84.33
EB	9/23/25	59	0.60	0.82	4.54	10.70	72.60
EM	9/23/25	60	0.68	<mdl< td=""><td>4.25</td><td>11.07</td><td>70.90</td></mdl<>	4.25	11.07	70.90
ES	9/23/25	61	0.64	0.83	3.99	10.31	76.67
C1B	9/23/25	51	1.11	1.10	3.60	10.48	73.29
C1M	9/23/25	52	1.23	0.63	3.72	10.32	71.51
C1S	9/23/25	53	1.42	1.88	4.31	11.24	78.62
C2B	9/23/25	54	1.10	<mdl< td=""><td>3.77</td><td>10.34</td><td>74.09</td></mdl<>	3.77	10.34	74.09
C2M	9/23/25	57	0.87	1.63	4.25	10.94	75.76
C2S	9/23/25	58	1.07	<mdl< td=""><td>3.40</td><td>10.60</td><td>73.82</td></mdl<>	3.40	10.60	73.82

LAB QUALITY CONTROL AND QUALITY ASSURANCE

ANALYSIS All Nutrients LOW
RUN 251016AR1.RUN
DATE 10/16/2025
TIME 1:48:39 PM

	1	3	4
METH	Total P	Phosphate Silicate	
UNIT	μmol/L	μmol/L μmol/L	
Base Gain	-7338	-7120	-5680
Gain	109	290	69
Lamp	291	276	245
Cal RSQ	1.000	1.000	0.998

Sample ID			15	
Cal.	9	2		
Cal.	6		10	
Cal.	4	0.5	8	
Cal.	2	0.25	4	
Cal.	0	0	0	
Blank DI	0.04	0.01	0.06	
Cal 3	97.70	99.86	99.70	
Cal 3	102.35	100.76	100.96	
Z1B	0.36582943	0.163689633	2.107239682	
Z1M	0.370924001	0.130668961	2.272789365	
Z1S	0.357011902	0.131658681	2.116623065	
Z2M	0.345451143	0.12819466	2.068030547	
Z2S	0.358383517	0.105431091	2.027480929	
Z3B	0.348586264	0.119287176	2.037869674	
Z3M	0.354660561	0.139891356	1.97453184	
Z3S	0.341728187	0.130668961	1.991958122	
Z4B	0.359951078	0.143265403	2.027145808	
Z4M	0.361714584	0.14331039	2.05295011	
Z4S	0.362106474	0.130219088	2.047923298	
EB	0.345451143	0.146504487	2.06099301	
EM	0.357403792	0.137102144	1.704089342	
ES	0.332714714	0.128959444	1.661528999	
Blank DI	0.03	0.01	0.05	
Cal 3	98.52	101.27	101.16	
Cal 3	101.51	101.85	99.04	
C1B	0.338397121	0.116183053	2.031502378	
C1M	0.33330255	0.120006973	2.162534617	
C1S	0.362890254	0.139261534	2.103553353	
C2B	0.33369444	0.121806465	2.113271857	
C2M	0.353093001	0.137282093	1.958781162	
C2S	0.342120077	0.109794858	1.981569377	
Blank DI	0.04	0.01	0.05	
Cal 3	97.80	100.13	98.71	
Cal 3	102.25	100.28	97.41	

*highlighted samples have been analyzed with a diltution. Dilutions have been applied to reported results.

Certified Reference Material							
Phosphate Silicate N+N							
umole/kg umole/kg umole/kg							
NMIJ Mid	1.08+/05	30.49 +/6	15.96+/5				
S-LAB Value	1.11	31.09					
NMIJ Low	.07+/01	1.31+/15	.06+/02				
S-LAB Value	0.08	1.36					

GRAB SAMPLE RESULTS

Sample ID	<u>Time</u>	<u>Date</u>	<u>Dissolved Oxygen</u>	<u>Dissolved</u> <u>Oxygen</u>	<u>Temperature</u>
Z1B	11:05	9/23/25	6.57	96.31	81.14
Z1M	11:10	9/23/25	6.66	94.47	81.14
Z1S	11:12	9/23/25	6.53	95.14	81.32
Z2B	11:19	9/23/25	6.53	96.61	81.14
Z2M	11:23	9/23/25	6.31	96.22	81.14
Z2S	11:24	9/23/25	6.50	94.57	81.32
Z3B	11:37	9/23/25	6.56	95.65	81.14
Z3M	11:42	9/23/25	6.58	94.73	81.14
Z3S	11:45	9/23/25	6.43	94.67	81.32
Z4B	11:54	9/23/25	6.84	94.46	81.14
Z4M	11:57	9/23/25	6.27	94.77	81.14
Z4S	11:59	9/23/25	6.34	94.59	81.32
EB	12:17	9/23/25	6.26	95.55	81.14
EM	12:22	9/23/25	6.67	94.87	81.14
ES	12:29	9/23/25	6.61	96.30	81.32
C1B	12:36	9/23/25	6.58	94.66	81.14
C1M	12:40	9/23/25	6.83	95.81	81.14
C1S	12:41	9/23/25	6.28	95.36	81.32
C2B	12:55	9/23/25	6.50	95.98	81.14
C2M	12:58	9/23/25	6.67	96.35	81.14
C2S	13:01	9/23/25	6.57	96.03	81.32
Units			mg/mL	% Saturation	Fahrenheit
DL			0.01	0.01	0.01

GRAB SAMPLE RESULTS

Sample ID	<u>Time</u>	<u>Date</u>	рH	<u>Salinity</u>	<u>Turbidity</u>
Z1B	11:05	9/23/25	8.10	35.36	0.10
Z1M	11:10	9/23/25	8.10	35.40	0.14
Z1S	11:12	9/23/25	8.10	35.38	0.15
Z2B	11:19	9/23/25	8.10	35.34	0.11
Z2M	11:23	9/23/25	8.10	35.37	0.09
Z2S	11:24	9/23/25	8.10	35.41	0.13
Z3B	11:37	9/23/25	8.10	35.39	0.09
Z3M	11:42	9/23/25	8.10	35.36	0.10
Z3S	11:45	9/23/25	8.10	35.45	0.10
Z4B	11:54	9/23/25	8.10	35.28	80.0
Z4M	11:57	9/23/25	8.10	35.33	0.09
Z4S	11:59	9/23/25	8.10	35.39	0.10
EB	12:17	9/23/25	8.10	35.32	0.09
EM	12:22	9/23/25	8.10	35.30	0.12
ES	12:29	9/23/25	8.10	35.38	0.19
C1B	12:36	9/23/25	8.10	35.36	0.10
C1M	12:40	9/23/25	8.10	35.33	0.14
C1S	12:41	9/23/25	8.10	35.35	80.0
C2B	12:55	9/23/25	8.10	35.29	0.12
C2M	12:58	9/23/25	8.10	35.31	0.12
C2S	13:01	9/23/25	8.10	35.39	0.10
Units				PPT	NTU
DL			0.01	0.01	0.01

ICP RESULTS

Bums2025 (4)

251023

n.a.: below MDL (method detection limit)

e: eliminated (over calibration range, failed qc, interference, etc)

Primary: Primary/preferred wavelength for elements measured at multiple wavelengths

IS: internal standard, yttrium

Note:

	Primary ppb	Primary ppb	Primary ppb	
	Cu3247	Se1960	Zn2062	Comments
MDL	2.9	2	4	
Sept-C	n.a.	n.a.	n.a.	
Sept-EB	3.912	n.a.	5.066	
Sept-EM	9.84	n.a.	n.a.	
Sept-ES	4.306	n.a.	n.a.	

ICP QA/QC

Y_2243 Y_3710 Sept-ES 2476.7 2807.2 Sept-EM 2478.1 2824.9 Sept-ES 2484.9 2874.9 Oct-ES 2486.9 2883.7 Oct-EM 2489.2 2846.3 Oct-ES 2481.4 2880.5 MeanIS_SW 2482.9 2852.9 Ag3280 Ag3382 As1890 As1937 Cr2055 Cr2677 Cr2835 Cu2247 Cu3247 Se1960 Se2039 Y_2243 Y_3710 Zn2062 Zn2138 MDL1 0.5698 0.9961 9.297 8.367 1.577 1.885 0.7865 6.948 9.779 4.055 5.749 4070.8 3566 9.873 9.674 *Zn background contamination MDL2 0.5804 0.7866 8.951 7.801 1.502 1.768 0.5203 4.023 9.129 4.842 3.943 4108.7 3549.3 3.774 3.588 MDL3 0.7971 0.7996 9.41 8.458 1.541 1.993 0.7386 2.567 4.868 2.069 4123.2 3538.4 3.07 2.853 10.46 MDL4 0.7443 0.8875 2.097 0.4002 3.924 5.304 5.58 4123.7 3563.1 9.74 7.051 1.582 10.96 3.071 2.776 2.784 MDL5 1.025 0.8257 10.62 7.566 1.679 2.031 0.7028 2.359 10.93 4.796 4.317 4123.4 3512.5 3.049 1.101 0.8551 9.935 7.632 1.528 1.957 0.507 1.713 10.63 4.861 4.809 4142 3533.2 3.03 MDL6 3.346 MDL7 0.841 1.129 10.65 7.393 1.538 1.948 0.581 0.7272 9.664 4.686 5.251 4124.9 3528.5 3.275 3.026 MeanIS 4116.7 3541.6 SD 0.2028 0.124 0.651 0.508 0.0578 0.1059 0.1412 2.0281 0.7037 0.3713 1.2671 0.4 0.5 MDL 0.7 2.1 1.6 0.2 0.4 6.4 2.3 1.2 MDL_SW 0.7 2.9 6.7 0.9 0.5 3.5 2.7 0.4 0.5 10.7 2

Please call if you have any questions regarding the water quality monitoring report.

Sincerely,

Hilo, HI 96720

John Burns, Ph.D. Associate Professor - Marine Science and Data Science University of Hawai'i at Hilo 200 W. Kawili St.

